
Memory-Efficient Optimization of Gyrokinetic
Particle-to-Grid Interpolation for Multicore Processors

Kamesh Madduri†, Samuel Williams†, Stéphane Ethier‡, Leonid Oliker†
John Shalf†, Erich Strohmaier†, Katherine Yelick†?

CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Princeton Plasma Physics Laboratory, Princeton, NJ 08543

EECS Department, University of California at Berkeley, Berkeley, CA 94720

ABSTRACT
We present multicore parallelization strategies for the particle-
to-grid interpolation step in the Gyrokinetic Toroidal Code
(GTC), a 3D particle-in-cell (PIC) application to study tur-
bulent transport in magnetic-confinement fusion devices. Particle-
grid interpolation is a known performance bottleneck in sev-
eral PIC applications. In GTC, this step involves particles
depositing charges to a 3D toroidal mesh, and multiple par-
ticles may contribute to the charge at a grid point. We de-
sign new parallel algorithms for the GTC charge deposition
kernel, and analyze their performance on three leading mul-
ticore platforms. We implement thirteen different variants
for this kernel and identify the best-performing ones given
typical PIC parameters such as the grid size, number of par-
ticles per cell, and the GTC-specific particle Larmor radius
variation. We find that our best strategies can be 2× faster
than the reference optimized MPI implementation, and can
substantially reduce the MPI memory footprint. Our anal-
ysis provides insight into desirable architectural features for
high-performance PIC simulation codes.

1. INTRODUCTION
Full long-range particle-particle force interaction simula-

tions carry an unacceptably high computational complex-
ity — O(N2) in the number of particles. To that end, a
number of techniques have been developed to mitigate the
computation time. The Particle-in-Cell (PIC) method is
a widely-used technique and can be applied to the simula-
tion of plasmas. This method solves the kinetic equation
by following the individual trajectories of the plasma’s con-
stituent charged particles. Since electric and magnetic forces
are long-range forces, the direct calculation of the binary
interaction between each pair of particles quickly becomes
prohibitive for large number of desired particles. Further-
more, the direct interaction automatically includes the full
collision dynamics between the particles, which overwhelms
the underlying collective physics unless an extremely large
number of particles is used to simulate the plasma. In order
to avoid these pitfalls, the PIC method uses an auxiliary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Supercomputing ’09 Portland, Oregon USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

grid to approximate the particles’ charge density as it varies
in space and time. Using this distribution, it solves Pois-
son’s equation to calculate the electromagnetic potential at
any point in space. The particles are then accelerated by
the potential. This calculation is only O(N) and has the
advantage of removing the effects of close encounter colli-
sions, allowing the simulation of the collective effects in the
plasmas with only a small number of particles compared to
the number in real plasmas.

Although the PIC approach drastically reduces the simu-
lation computational requirements, achieving good parallel-
and architectural-efficiency is far more challenging than the
full O(N2) calculation. The particle-to-grid interpolation
step of charge deposition in particular is a major perfor-
mance bottleneck [11]. Unlike simple histograms, particles
update the bounding grid points each with a fraction of their
charge. Randomly localized particles may make poor use of
caches. The challenges of this deposition step become far
more significant when one contemplates the RISC nature
of modern processors. Floating-point increment is typically
not an atomic operation. This can prohibit or impede un-
rolling or parallelizing the particle array as multiple particles
may attempt to increment the same grid points.

The Gyrokinetic Toroidal Code (GTC) [7, 4] was devel-
oped to study the global influence of microturbulence on
particle and energy confinement. It is a three-dimensional,
fully self-consistent PIC code which solves the kinetic equa-
tion in a toroidal geometry. The charge update scheme in
GTC differs from traditional PIC codes. In the classic PIC
method, a particle is followed directly and the charge is dis-
tributed to its nearest neighboring grid points. However, in
the gyrokinetic PIC approach used in GTC, the fast circu-
lar motion of the charged particle around the magnetic field
lines is averaged out and replaced by a charged ring. For
the wavelengths of interest for low frequency microturbu-
lence studied by GTC, it uses four points on the charged
ring [6] to describe the non-local influence of the particle
orbit. In this way, the full influence of the fast, circular tra-
jectory is preserved without having to resolve it. However,
this scheme inhibits straightforward shared-memory paral-
lelism even further, since the update positions need to be
computed for each particle and at each time step. Further,
multiple particles may concurrently attempt to deposit their
change onto the same grid point.

1.1 Our Contributions
Our work focuses on multicore parallelization strategies

for the charge deposition kernel of GTC. The memory re-

quirements in the current MPI implementation of the charge
deposition kernel scale proportionally with the number of
cores/threads in a single node, as the grid is replicated on
all processes in the corresponding toroidal domain to allow
for concurrent updates. However, this becomes a scalability
concern on multi- and many-core systems simulating large
or dense toroidal grid instances. We present several grid
decomposition and synchronization schemes to partition the
charge deposition work among multiple threads of execution
while limiting the memory requirements of our approaches to
typically within triple the serial execution’s footprint. On
the three multicore machines on which we analyze perfor-
mance, we observe that the best Pthreads implementation
consistently outperforms the reference MPI code.

The decomposition schemes and optimizations discussed
in this paper are applicable to other PIC codes as well. GTC
is arguably one of the more challenging PIC codes to opti-
mize, due to the underlying toroidal geometry and the gy-
rokinetic averaging scheme. We give a brief overview of GTC
in the next section, before exploring the charge deposition
kernel in detail.

2. GYROKINETIC TOROIDAL SIMULATION
As the global energy economy transitions from fossil fuels

to cleaner alternatives, nuclear fusion becomes an attrac-
tive potential solution for satisfying growing needs. Fusion,
the power source of the stars, has been the focus of active
research since the early 1950s. While progress has been
impressive — especially for magnetic confinement devices
called tokamaks — the design of a practical power plant
remains an outstanding challenge. A key topic of current
interest is microturbulence, which is believed to be respon-
sible for the experimentally observed leakage of energy and
particles out of the hot plasma core. Understanding and
controlling this process is of utmost importance for oper-
ating current devices and designing future ones. This goal
led to the design of GTC to study the global influence of
microturbulence on particle and energy confinement.

GTC solves the non-linear gyrophase-averaged Vlasov-
Poisson equations [6] for a system of charged particles in
a self-consistent, self-generated electrostatic field. The ge-
ometry of the system is that of a torus with an externally im-
posed equilibrium magnetic field, characteristic of toroidal
fusion devices. By using the PIC method, the non-linear
partial differential equation describing the motion of the
particles in the system becomes a simple set of ordinary
differential equations that can be easily solved in the La-
grangian coordinates. The self-consistent electrostatic field
driving this motion is calculated via the PIC approach, by
using a grid where each particle deposits its charge to a lim-
ited number of neighboring points according to its range of
influence.

The current production version of GTC scales well with
the number of particles on some of the largest supercom-
puting systems [10, 9, 5]. It achieves this by using mul-
tiple levels of parallelism: a 1D domain decomposition in
the toroidal dimension (long way around the torus geome-
try), a multi-process particle distribution within each one of
these toroidal domains, and a loop-level multitasking imple-
mented with OpenMP directives [1]. The local grid within
a toroidal domain is replicated on each MPI process within
that domain and the particles are randomly distributed to
cover that whole domain. The grid work, which comprises

of the field solve and field smoothing, is performed redun-
dantly on each of these MPI processes in the domain. Only
the particle-related work is fully divided between the pro-
cesses. This is not an issue as long as the grid work remains
small compared to the particle work, which is the case for
most of the GTC simulations carried out to date.

3. EXPERIMENTAL SETUP
In this section, we describe in detail the machines used

in this study, and our benchmarking methodology. We se-
lect three leading multicore designs to explore the benefits
of our threaded implementations of the charge deposition
kernel across a variety of architectural paradigms. To miti-
gate the impact of limited bandwidth, long latency, and co-
herency networks, we limit ourselves to dual-socket SMPs.
A summary of their architectural parameters is provided in
Table 1.
Intel Nehalem: The recently released Nehalem is the lat-
est enhancement to the Intel “Core” architecture, and repre-
sents a dramatic departure from Intel’s previous multipro-
cessor designs. It abandons the front-side bus (FSB) in favor
of on-chip memory controllers. The resultant QuickPath In-
terconnect (QPI) inter-chip network is similar to AMD’s Hy-
perTransport (HT), and it provides access to remote mem-
ory controllers and I/O devices, while also maintaining cache
coherency. Nehalem is novel in two other aspects: support
for two-way simultaneous multithreading (SMT) and Tur-
boMode. The latter allows one core to operate faster than
the nominal clock rate under certain workloads. On our ma-
chine, TurboMode is disabled due to its inconsistent timing
behavior.

The system used in this study is a dual-socket, quad-core
2.66 GHz Xeon X5550 (Gainestown) with a total of 16 hard-
ware thread contexts. Each core has a private 32 KB L1 and
a 256 KB L2 cache, and each socket instantiates a shared
8 MB L3 cache. Additionally, each socket integrates three
DDR3 memory controllers operating at 1066 MHz, provid-
ing up to 25.6 GB/s of DRAM bandwidth to each socket.
In comparison to the Barcelona system used in this paper,
Nehalem has a similar floating-point peak rate but a signif-
icantly higher memory bandwidth and cache.
AMD Opteron 2356 (Barcelona): The Opteron 2356
(Barcelona) is AMD’s quad-core processor offering. Each
Opteron core runs at 2.3 GHz, has a 64 KB L1 cache, and a
512 KB L2 victim cache. In addition, each chip instantiates
a 2MB L3 quasi-victim cache that is shared among all four
cores. Each Opteron socket includes two DDR2-667 memory
controllers providing up to 10.66 GB/s of raw DRAM band-
width. Sockets are connected via a cache-coherent HT link
creating a coherency and NUMA network for this 2 socket
(8 core) machine.
Sun UltraSparc T2+ (Victoria Falls): The Sun “Ultra-
Sparc T2 Plus”, a dual-socket × 8-core SMP referred to as
Victoria Falls, presents an interesting departure from main-
stream multicore processor design. Rather than depending
on four-way superscalar execution, each of the 16 strictly
in-order cores supports two groups of four hardware thread
contexts (referred to as Chip MultiThreading or CMT) —
providing a total of 64 simultaneous hardware threads per
socket. Each core may issue up to one instruction per thread
group assuming there is no resource conflict. The CMT ap-
proach is designed to tolerate instruction, cache, and DRAM
latency through fine-grained multithreading. Victoria Falls

Table 1: Architectural details of parallel platforms.

Core Architecture AMD Barcelona Intel Nehalem Sun Niagara2

superscalar superscalar HW multithreadedType
out of order out of order dual issue

Clock (GHz) 2.30 2.66 1.16
Double-precision GFlop/s 9.2 10.7 1.16

L1 Data Cache 64 KB 32 KB 8 KB
private L2 cache 512 KB 256 KB —

Opteron 2356 Xeon X5550 UltraSparc T5140System
(Barcelona) (Gainestown) (Victoria Falls)

Sockets 2 2 2
Cores(Threads) per Socket 4(4) 4(8) 8(64)

Primart memory parallelism paradigm HW prefetch HW prefetch Multithreading
2×2 MB 2×8 MB 2×4 MBShared last-level cache

(shared by 4 cores) (shared by 4 cores) (shared by 8 cores)
DRAM Capacity 16 GB 12 GB 32 GB

42.66(read)DRAM Pin Bandwidth (GB/s) 21.33 51.2
21.33(write)

Double-precision GFlop/s 73.6 85.3 18.7

has no hardware prefetching, and software prefetching only
places data in the L2 cache. Multithreading may hide in-
struction and cache latency, but may not fully hide DRAM
latency. Our machine is clocked at 1.16 GHz, does not im-
plement SIMD, but has an aggregate 64 GB/s of DRAM
bandwidth in the usual 2:1 read:write ratio associated with
FBDIMM. As such, it has significantly more memory band-
width than either Barcelona or Nehalem, but has less than a
quarter the peak flop rate. With 128 hardware thread con-
texts, this Victoria Falls system poses parallelization chal-
lenges that we do not encounter in the Gainestown and
Barcelona systems.

3.1 Methodology
To analyze multicore performance of the GTC particle-to-

grid interpolation step, we extract the key computation in an
optimized GTC MPI implementation to create a stand-alone
PIC charge deposition benchmark. The data representation
and the computation in the initial version of this benchmark
are identical to the reference MPI code.
Problem Instances: There are several input parameters in
GTC to describe the test simulation. The ones most relevant
to the charge deposition kernel are the size of the discretized
toroidal grid, the total number of particles, and the Larmor
radius distribution of the particles for four-point gyrokinetic
averaging. Often one replaces the number of particles with
the average particle density as measured in the ratio of parti-
cles to grid points (labeled as micell). Three coordinates de-
scribe the position of a particle within the discretized torus:
ζ (zeta, the position in the toroidal direction), ψ (psi, the
radial position within a poloidal plane), and θ (theta, the po-
sition in the poloidal direction within a toroidal slice). The
corresponding grid dimensions are mzeta, mpsi, and mtheta-
max. In this paper, we explore four different grid problem
sizes, labeled A, B, C, D, and vary the particle density from
5 and 100. Table 2 lists these settings, and these are similar
to ones used in prior experimental studies and GTC produc-
tion runs [1, 5].

The Larmor radius of a particle ρ is dependent on the
value of the particle’s magnetic moment and the local value
of the magnetic field B. The magnetic moment of the par-
ticle, which does not vary during the simulation, is given by
B · ρ2. As B changes with the position of the particle, ρ
also varies. For all four GTC problem sizes we use in this

Table 2: The GTC test problem settings used in our
experimental study.

Problem Size A B C D

mzeta 1 1 1 1
mpsi 90 192 384 768

mthetamax 640 1408 2816 5632

mgrid 32449 151161 602695 2406883

Total Particles (micell=5) 0.16M 0.76M 3M 12M
Total Particles (micell=100) 3M 15M 60M 241M

study, the maximum Larmor radius (a function of several
other GTC parameters) turns out to be roughly mpsi/16.
Further, the radii values are initially chosen from a uniform
random distribution. In Section 4 and 5, we discuss how
this choice affects the parallelization strategies we employ.
Distribution and Movement of Particles: As we are
only studying charge deposition in this paper, as opposed to
the entire GTC application, we assume that particles do not
move along the toroidal direction. As such a given particle
will always update the same locations. However, we do not
explicitly exploit this characteristic. To exercise different
architectural features, we experiment with two initial par-
ticle distributions: ψ-sorted and random. Unless otherwise
stated, any data presented is based on the ψ-sorted distri-
bution. Given the possible range of variation along the θ
direction, it is likely that two logically adjacent particles in
a ψ-sorted distributed can be quite far apart in the toroidal
grid. Whether running the MPI or threaded version, we as-
sume that a set of MPI processes/threads own exactly one
plane in zeta and maintain one ghost copy of the neighbor-
ing plane. This is consistent with typical GTC parameters
settings in production runs.
Reference MPI version: The MPI implementation stati-
cally partitions the particles within a toroidal segment among
the participating MPI tasks. Each task maintains a private
copy of the two bounding poloidal planes, and may thus de-
posit charge independently. An MPI reduction is performed
to reduce the N copies of the grid to one. We explored a
range of degrees of parallelism when running the MPI im-
plementation on our SMPs. When benchmarking, we run
successive iterations of local charge depositions and MPI re-
ductions.
PThreads versions: To evaluate performance of the threaded

implementations, we employ a SPMD-inspired threading model
in which communication of particles or updates to grid val-
ues is handled through shared memory rather than message
passing. Typically, we create N threads, statically partition
the particles, allow them to initialize their data, and then
benchmark repeated charge depositions.
Timing and GFlop/s: We use high-precision cycle coun-
ters on the different machines to measure the total time for
ten iterations of charge deposition. We manually counted
the number of floating point operations (flops) within the
function. We express average GFlops/s as the ratio of total
flops to the average execution time.
Build software environment: We build our Pthreads
codes on the three machines with the GNU C compiler and
aggressive architecture-specific optimization flags. We use
GNU Fortran90 compiler with identical optimization flags to
compile the reference GTC Fortran code, and the MPICH2
library (version 1.0.8) with a fast shared memory communi-
cation device (ch3:shm on the Nehalem and Victoria Falls
systems, and ch3:nemesis on the Barcelona system).

4. GTC CHARGE DEPOSITION KERNEL
Charge deposition is easily GTC’s most challenging kernel

to optimize. The overall memory access pattern of this ker-
nel may vary across time steps, and is dependent on several
GTC simulation parameters. Elements of the charge density
grid are updated by each particle slightly differently at each
time step, as the updates are based on the particle’s posi-
tion, velocity, and magnetic moment values. Further, each
particle can update up to 32 possibly non-contiguous loca-
tions when applying the four-point gyro-averaging scheme,
leading to significant performance variation across combina-
tions of cache-based superscalar architecture, grid size, and
the number of particles per cell. In this section, we discuss
shared-memory parallelization strategies and optimizations
that are applicable for a range of grid size and particles-per-
cell configurations.

4.1 Overview
Each iteration of the charge deposition kernel performs

roughly 180 floating point operations, and the computation
proceeds in two phases. First, given a particle’s current
spatial coordinates, we identify the two bounding poloidal
planes to interpolate charge values to. Based on the parti-
cle’s Larmor radius, we determine up to sixteen grid posi-
tions to update on each plane, and the corresponding charge
density increments. Note that if the particle’s Larmor radius
is smaller than the radial grid spacing, several grid update
positions may overlap. This address calculation phase re-
quires 115 flops, including a square-root operation. Next,
we access the density array to increment charge densities at
32 positions, and perform two flops per update. We refer to
this as the density update phase.

The toroidal grid and the gyrokinetic averaging scheme
are the two key computational aspects of GTC that distin-
guish it from other PIC applications. Both these charac-
teristics introduce variability in charge density update posi-
tions for a particle, and the GTC particle-grid interpolation
step typically demonstrates a lower cache locality compared
to PIC codes that use a rectilinear grid discretization [3].
Further, the particle Larmor radii distribution impacts load
balancing when parallelizing the density update phase.

4.2 Parallelization
In order to parallelize the charge deposition computation,

we employ a straightforward partitioning of the particle ar-
ray. Thus a given particle is owned and exclusively operated
on by one and only one thread. This lets us exploit spatial
locality in particle array accesses for the address calculation
phase, and also results in a balanced partitioning of compu-
tation among threads. However, there is no guarantee that
the grid points bounding a given particle will be updated
exclusively by the thread processing the particle. Thus, a
synchronization lock must be employed to provide mutual
exclusion when there are multiple threads accessing these
grid points. Locks are known to be slow. As such, there
are several strategies to mitigate this performance impact.
These can be categorized into the orthogonal concepts of
grid decomposition and synchronization mechanisms.

4.3 Grid Decomposition
In Figure 1, we illustrate four possible grid decomposition

schemes that are applicable to this kernel. Figure 1(a) is the
purest shared memory implementation where there is only
one copy of the grid, and all threads must contend for ex-
clusive access. At the other extreme is the approach taken
in the MPI implementation. As shown in Figure 1(d), each
thread or process maintains a local duplicate of the grid and
no synchronization is required for updates. The memory re-
quirements scale with the number of cores for this approach,
a seemingly inappropriate solution in the multicore era.

It is evident that any static grid partitioning will benefit
this kernel only when the particles are ordered and processed
based on their grid position. The ordering can range from
a full sort (sorting by r, theta, and zeta coordinates), to
simple binning [2] in the radial direction. We demonstrate
in Section 5 that parallel performance is severely affected
if particle positions are fully randomized. Occasional radial
particle binning is essential to ensure consistently high per-
formance for charge deposition, as well as other GTC kernels
[8]. Thus, we assume a ψ-sorted particle distribution in this
paper, and will explore performing radial binning in con-
junction with charge deposition in future work. It is also
reasonable to assume that binning is unnecessary for every
simulation time step, as the particle position variation in
the radial direction is considerably less than the θ and ζ
directions.

On multicore architectures, we strive for a middle ground
in which we create one or more auxiliary copies of the grid to
accelerate charge deposition. Our second approach, shown
in Figure 1(b), adds one auxiliary grid that is partitioned
into disjoint annuli exclusively owned and updated by a
unique thread. We label this approach the Partitioned Grid.
For each of the 32 grid points to be updated, if the up-
date location lies within the thread’s exclusively owned grid,
the increment may be performed without any synchroniza-
tion mechanism. However, if the grid point lies outside the
thread’s exclusively owned grid, the thread will write to the
shared grid using a synchronization mechanism to obtain
exclusive access. Clearly, after all grid updates have been
performed, we have a thread barrier, and the two (shared
and auxiliary) copies of the grid must be reduced to one.

In the partitioned grid approach, we decompose the grid
into annuli such that each region encompasses approximately
the same number of grid points. However, note that the
number of grid points per annulus varies, and annuli typ-

Thread 3
Thread 2
Thread 1
Thread 0

One grid
shared by all threads

Thread 2

Each thread
maintains a private copy

of the entire grid

Shared Grid
(a)

Additional
Partitioned Grid

(b)

Additional
Partitioned Grid w/Ghost

(c)
Reduction Approach

(d)

Figure 1: An illustration of the four different grid decomposition/replication strategies we utilize in the
Pthreads implementations. Note, in (c) thread 2 maintains a copy of parts of thread 1 and 3’s domains.

ically have more points as we move radially outward. For
parallel runs at high concurrencies, where the number of
threads is roughly equal to the number of radial surfaces
(mpsi), we may further partition the grid points in a single
annulus among multiple threads for load balancing. We la-
bel this optimization as Fine partitioning and expect it to
be helpful in case of smaller grid instances.

As GTC performs a four-point gyrokinetic averaging, it
is usually the case that the updated grid points span sev-
eral radii. Thus it is quite possible that threads will often
access the shared grid even when the particles have been
partially sorted. To that end, as shown in Figure 1(c), we
add an auxiliary grid in which the subgrids are overlapping.
Each subgrid is radially extended inward and outward with
a ghost surface. Such an approach helps to mitigate synchro-
nization overhead, but requires slightly more memory, and
a slightly more complex reduction. We label this approach
the Partitioned Grid with Ghost Surfaces.

The efficacy of the grid decomposition schemes is depen-
dent on the maximum Larmor radius value, as well as the
distribution of Larmor radii values. As we note in the pre-
vious section, for the problem sizes and GTC simulation
parameters we use, the maximum Larmor radius is roughly
mpsi/16 and is independent of the radial position of the par-
ticle. This setting gives us an upper bound on the reduction
in shared grid accesses we can achieve using any of the above
grid decomposition schemes.

4.4 Synchronization Mechanisms
We next discuss possible synchronization mechanisms to

access the shared grid in the above decomposition schemes.
As shown in Figure 2, we explore four different methods
for providing exclusive access. Although one might näıvely
couple any of these methods with any grid decomposition
strategy, there are only 13 legitimate combinations — Fig-
ure 1(a–c) × Figure 2(a–d), and the fully replicate and reduce
algorithm of Figure 1(d).

Figure 2(b) illustrates a coarse-grained locking mecha-
nism implemented using Pthreads mutual exclusion routines
in which we lock only on one of the concentric theta×zeta
cylindrical surfaces — essentially a series of rings extruded
in zeta. Although each thread must acquire only 8 succes-
sive locks per particle update, concurrency is limited to the
number of concentric cylinders (mspi). This coarse-grained
locking scheme is reasonable under the assumption that par-
ticles are binned according to their radial coordinate.

As shown in Figure 2(c), we may reduce the granularity
of locking to all values in zeta for particular coordinate in
theta and psi. Such an approach dramatically increases con-
currency, but mandates that each thread acquire up to 16
locks per particle.

The final locking approach is fine-grained locking and locks
only one grid point. This approach doubles the potential
concurrency, but also doubles the number of locks per par-
ticle.

One should observe that we strive for atomicity in up-
dates, and not a particular ordering. To that end, in addi-
tion to the lock-based approaches, we hand-code x86 assem-
bly and utilize SPARC intrinsics to implement an atomic
floating-point increment. Such a method should have lower
overhead than a Pthreads-based mutex lock and provide
atomicity, but will still be slower than the RISC load–increment–
store operation. When using this approach, each thread
performs 32 atomic floating-point increments per particle
(illustrated in Figure 2(a)).

It should be reiterated that when updating an exclusively
owned copy of a grid point, neither locks nor atomic incre-
ments are required. Additionally, one may express 8-way
memory-level parallelism per thread (the 8 grid points box-
ing a particle).

As one migrates from Figure 2(b) to Figure 2(d), the over-
head per charge deposition increases due to increased num-
ber of locks per particle. However, this can be mitigated
with increased concurrency. We generally expect the hand-
coded atomic increments to provide the highest concurrency,
but probably not the lowest overhead per particle. As dif-
ferent architectures have different concurrency demands and
different overheads for locking and atomic implementations,
we explore all combinations for each processor.

4.5 Serial Optimizations
Several serial code optimizations are applicable to the

Pthreads charge deposition code variants. The particle po-
sition, velocity, and other auxiliary data (in total six double-
precision values per particle) are stored in an array-of-structures
representation in the original Fortran code. Since we require
only five of the six values in the charge deposition kernel,
we switch to a structure-of-arrays representation in the C
benchmark. We flatten all Fortran multi-dimensional aux-
iliary grid arrays in the C code and align them to cache
line boundaries during initialization. Next we fuse the loops
corresponding to the address calculation and density update

Coarse-Grained Locking
(b)

Medium-Grained Locking
(c)

Fine-Grained Locking
(d)

Atomics
(a)

Lock all theta/zeta
for a given psi

Lock all zeta for
a given theta/psi

Atomically increment
one grid point

Individually lock
one grid point

Figure 2: An illustration of possible synchronization strategies for the Pthreads implementations. Purple
shaded regions denote the lock granularity.

steps to maximize particle data reuse. We use SSE2 instruc-
tions on the Barcelona and Nehalem systems to increment
charge densities of grid points that are consecutively laid out
in ζ. The charge density step involves 20 stores per particle
to five different arrays, and these values are used in latter
simulation routines. We observe up to a 30% increase in
performance if we do not time these stores (not shown in
figures). This gives us an estimate of realizable performance
improvement with data reorganization. We also find that
the single square-root instruction in the address calculation
phase does not significantly impact performance. The kernel
is about 2-3% faster if we precompute this value.

5. EXPERIMENTAL RESULTS
In this section, we perform an extensive analysis of the

performance and memory utilization characteristics of the
various threaded optimizations on the charge deposition ker-
nel, for the class B problem size with a density of 5 parti-
cles per grid point. Unless otherwise noted, the particles
have been initially sorted to provide locality to partitioned
grid strategies. We follow this analysis with a performance
survey across a wide range of the problem configurations
detailed in the Section 3 for memory-efficient and random
particle distribution restrictions.

5.1 Decomposition, Synchronization, and Op-
timization Performance

Figure 3 shows performance as a function of the 13 pos-
sible combinations of grid decomposition and synchroniza-
tion schemes stacked with serial optimizations for the class
B problem size. micell is set to 5 in all cases. All data
points show the best performance with any concurrency.
The dashed line represents the performance of the reference
MPI implementation for the same problem configuration.

Although Nehalem has the same number of cores, and
only a moderately higher flop rate, we see the substantially
larger cache and higher bandwidth yield twice the perfor-
mance of Barcelona. While Victoria Falls has as much cache
as Barcelona, and substantially better bandwidth, its much
lower flop rate results in it being substantially slower than
either Barcelona or Nehalem.

We observe that the simple replicate and reduce strategy
provides the best performance on all three systems for this
problem instance. The partitioned grid with ghost surfaces
decomposition schemes perform substantially better than
the pure shared grid decompositions. The performance im-

provement is directly correlated with the reduction in shared
grid increments. On the 128-way threaded Victoria Falls
system, the mpsi/128-annuli thick ghost zones do not give
us a substantial benefit, as the maximum Larmor radius is
roughly mpsi/16.

Given the relatively low thread-level parallelism employed
on the x86 systems, it should come as no surprise that
coarse-grained locking provided superior performance when
compared to either medium- or fine-grained locking. Essen-
tially, the dramatically reduced locking overhead per par-
ticle wins out over reduced concurrency. Also, since the
particles are ψ-sorted, the coarse-grained lock contention is
low on the x86 systems. A surprising result occurs when
using atomic increments on the x86 processors. We see that
performing up to 32 atomic increments per particle pro-
vides better performance than 8 coarse-grained locks. We
use an atomic compare-and-swap instruction to implement
the floating point increment, and the same strategy can be
applied to implement a mutex spinlock which should per-
form well under low contention. This observation suggests
that x86 Pthreads mutex library routines are not the best
possible implementations. Interestingly, the SPARC mutex
routines deliver performance much closer to the intrinsic-
based atomic increments.

We also observe that for this kernel, process pinning is
perhaps the most valuable serial optimization. Fine parti-
tioning gives a moderate performance improvement on the
Victoria Falls system. SIMDization provides some benefit on
Nehalem, which may be due to the lower double-precision
Flop/byte ratio of this system when compared to Barcelona.

Typically, the single shared grid Pthreads implementation
achieved performance on parity with the MPI implemen-
tation. However, the decompositions that performed some
replication substantially exceeded MPI performance. For
instance, the memory-efficient partitioned grid with ghost
flux surfaces and atomic increments scheme performs 1.5×,
1.7×, and 1.2× faster that the MPI code on the Nehalem,
Barcelona, and Victoria Falls systems respectively.

5.2 Scalability within an SMP
Figure 4 shows the scalability of the underlying architec-

ture for the best performing synchronization method on the
grid decompositions presented in Figure 3. For the Pthreads
implementations, we enumerate hardware thread contexts
so that when ramping up the number of threads, we ex-
ploit multithreading within a core, then multicore on chip,

0

1

2

3

4

5

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

NUMA-aware allocation
+ Process pinning
+ Fine partitioning
+ SIMDization

P
e

rf
o

rm
a

n
ce

 (
G

F
lo

p
s/

s)

Parallel Implementation

MPI

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction

(a) Barcelona performance

0

2

4

6

8

10

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

NUMA-aware allocation
+ Process pinning
+ Fine partitioning
+ SIMDization

P
e

rf
o

rm
a

n
ce

 (
G

F
lo

p
s/

s)

Parallel Implementation

MPI

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction

(b) Nehalem performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

NUMA-aware allocation
+ Process pinning
+ Fine partitioning
+ SIMDization

P
e

rf
o

rm
a

n
ce

 (
G

F
lo

p
s/

s)

Parallel Implementation

MPI

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction

(c) Victoria Falls performance

Figure 3: Performance as a function of grid decomposition, synchronization, and optimization for the class
B problem size with five particles per cell (micell = 5).

and finally multiple sockets on the SMP. We do not present
scalability within a core, but rather present the data starting
with fully-threaded core. As the vertical axis is performance
per thread, perfect scaling would be a horizontal line. How-
ever, for the reference MPI implementation, we do not bind
processes to cores. The results correspond to default OS
scheduling.

On the x86 architectures, we generally observe very good
scalability for the Pthreads implementations. The schemes
that perform some or full grid replication provide similar
performance, and substantially better performance than the
non-replicated shared grid. This generally suggest that nei-
ther memory bandwidth nor cache capacity are adversely
impeding performance for this problem configuration.

The Pthreads fully shared grid implementation demon-
strates the best scaling on all the systems, but per-thread
performance is affected by synchronization overhead. The
grid decompositions reduce updates to the shared grid, but
lead to per-thread execution time variability due to the Lar-
mor radius values. The primary problem is that the Lar-
mor radius is independent of the particle’s radial location.
Thus, threads which are assigned outer annuli in the grid
decomposition scheme have more updates into the shared
grid and consequently a higher execution time. However the
address calculation stage performing 110 flops, scales well
on all concurrencies and there is still an overall performance
improvement on the Victoria Falls system.

Although Barcelona’s MPI scalability shows only a mod-
erate degradation in performance, Nehalem’s per core MPI
performance drops by more than a factor of three suggesting
that the two-way SMT is not of much benefit. Moreover, on
both machines, the Pthreads implementations deliver supe-
rior performance compared with the MPI implementation.

Victoria Falls demonstrates interesting results. As adver-
tised, chip multithreading (CMT) is designed to exploit all
forms of parallelism with a single programming paradigm.
Using one core, we see performance on Victoria Falls (8
threads) is comparable to the complex superscalar archi-
tectures — an apparent win for CMT. One might expect
muticore scalability to be much more readily achieved than
multithreading scalability. However, due to the imbalance
imposed by the gyrokinetic averaging scheme, we see a sharp
drop in performance of the replicated grid approaches be-
yond 32 threads. Given that this problem instance is fairly
small, the reduction step in the replicate and reduce algo-

rithm does not scale beyond 48 threads. Initially the Victo-
ria Falls MPI implementation shows the best performance,
likely due to eight processes being scheduled on different
cores. However, as the process/thread count increases, the
MPI performance drops precipitously, and plummets below
the Pthreads implementations. Worse still, the MPI im-
plementation fails to run at concurrencies greater than 64
processes.

5.3 Memory Utilization
We do not believe that aggregate memory capacity or

bandwidth can scale linearly with the number of cores. As
such, an algorithm’s memory utilization may become a pro-
hibitive factor in software/hardware co-design. To that end,
Figure 5 presents the memory utilization for each grid de-
composition/synchronization combination for the three ar-
chitectures. For threaded implementations, auxiliary grid
arrays are shared by all threads, whereas in the MPI ver-
sion, where each task is a separate process, these grid arrays
are replicate by the number of processes. When it comes
to the charge deposition grid, we observe the four decom-
position strategies result in dramatically different memory
utilization, but the locking strategies result in tiny changes.
A single shared grid requires only a fraction of the memory
used by the auxiliary grid arrays. In fact, when using the
partitioned grid approach, the aggregate charge deposition
grid memory footprint is less than the memory footprint of
the auxiliary grid arrays. Total grid replication on thread
implementations will be less than double the memory foot-
print only on SMPs with less than four cores. As we passed
that point a few years ago, development of memory-efficient
implementations is becoming increasingly important. Repli-
cation on threaded implementations use as much memory for
the charge deposition grid as replication on MPI implemen-
tations, but will use dramatically (1

Nthreads
) less memory for

the common grids.
Although 100 MB – 1500 MB might not sound like much

on the Victoria Falls system, one should be mindful that
Figure 5 only shows the memory capacity for the small, low
density problem. As the problem size and density increase,
so too will the memory footprint. When extrapolated into
the future, exponentially increasing core counts cast serious
doubts on the viability of grid replication implementations.

P
er

fo
rm

an
ce

 s
ca

lin
g

(G
F

lo
p/

s
pe

r
th

re
ad

/p
ro

ce
ss

)

1 2 4 6 8

0.2

0.4

0.6

Number of threads/MPI processes

S-Atomic
P-Atomic
PG-Atomic
Reduction
MPI

(a) Barcelona parallel scaling

P
er

fo
rm

an
ce

 s
ca

lin
g

(G
F

lo
p/

s
pe

r
th

re
ad

/p
ro

ce
ss

)

2 4 8 12 14 16

0.0

0.2

0.4

0.6

Number of threads/MPI processes

S-Atomic
P-Atomic
PG-Atomic
Reduction
MPI

(b) Nehalem parallel scaling

P
er

fo
rm

an
ce

 s
ca

lin
g

(G
F

lo
p/

s
pe

r
th

re
ad

/p
ro

ce
ss

)

8 16 32 48 64 96 120

0.02

0.04

0.06

0.08

Number of threads/MPI processes

8 16 32 48 64 96 120 128

S-Coarse
P-Coarse
PG-Coarse
Reduction
MPI

(c) Victoria Falls parallel scaling

Figure 4: Best performance as a function of grid decomposition for the class B problem size with five particles
per cell (micell = 5) using the best synchronization method.

0

20

40

60

80

100

120

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

Auxiliary grid arrays
Charge dep. grid array(s)
Locks

G
ri

d
 a

rr
a

ys
 M

e
m

o
ry

 U
til

iz
a

tio
n

 (
M

B
)

Parallel Implementation

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction
MPI

(a) Barcelona grid memory footprint

0

50

100

150

200

250

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

Auxiliary grid arrays
Charge dep. grid array(s)
Locks

G
ri

d
 a

rr
a

ys
 M

e
m

o
ry

 U
til

iz
a

tio
n

 (
M

B
)

Parallel Implementation

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction
MPI

(b) Nehalem grid memory footprint

0

500

1000

1500

2000

Shared grid Partitioned grid Partitioned grid+
ghost surfaces

Auxiliary grid arrays
Charge dep. grid array(s)
Locks

G
ri

d
 a

rr
a

ys
 M

e
m

o
ry

 U
til

iz
a

tio
n

 (
M

B
)

Parallel Implementation

10 ~ 15 MB

~ 1500 MB

~ 300 MB

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Coarse
Medium

Fine
Atomic

Reduction
MPI

(c) Victoria Falls grid memory footprint

Figure 5: Memory footprint as a function of grid decomposition, and synchronization for the class B problem
size with five particles per cell (micell = 5).

5.4 Performance of Memory-Efficient Imple-
mentations

Figure 6 shows the GFLOP/s rate as a function of parti-
cle density and problem size using the best, memory-efficient
threaded implementation for that particular configuration.
We do not consider replicate and reduce to be memory-
efficient, as the memory footprint scales linearly with the
number of threads. Nevertheless, the largest problems and
highest densities coupled with the most memory-efficient
threaded implementations still require more memory than
is installed on our SMPs.

Larger problem sizes demand larger caches, but larger par-
ticle densities can yield higher temporal locality. As such,
we observe that performance decreases with increasing grid
size, and increases with increasing particle density, albeit
often by only a factor of two. Victoria Falls balks at this
trend for small problem sizes (A in this case) and low parti-
cle densities. This likely occurs due to the fact that Nthreads

exceeds mpsi. As a result, simple partitioned grid strategies
leave some threads without grid points. Fine partitioning
ameliorates this, but the locking strategies limit potential
concurrency.

Figure 7 details the relative performance of our best memory-
efficient threaded implementation to the best replicate and
reduce threaded implementation. When the number is close
to 1.0×, we attain near-optimal performance without squan-
dering memory. Note that it is possible for the performance
of memory-efficient threaded implementations to exceed the
reduction approach. In such cases, we deliver both optimal
performance and minimize the memory footprint.

On Barcelona, the memory-efficient approach yields bet-
ter than 80% of the best performance using roughly 45%
of the memory footprint. The results on Nehalem are even
more encouraging — typically achieving better than 95% of
the best performance while using only 33% of the memory
footprint of the threaded replicate and reduce implementa-
tion. We observe that for micell values, the memory-efficient
approach performs better than the reduction, as the over-
head of reduction in comparison to the density updates is
proportionally higher.

As particle density increases on Victoria Falls, the memory-
efficient performance falls away from the reduction approach
regardless of problem size. In effect, the reduction cost has
been amortized by the sheer number of charge depositions.

5.5 Performance Impact of Random Particle
Distributions

Thus far, all quoted performance numbers have relied on
a (partially) sorted particle distribution. However, with-
out continual or periodic sorting, the particle positions will
slowly be randomized. As such, we must examine the per-
formance on a random distribution to motivate periodic par-
tial sorting. To that end, Figure 8 presents the fraction of
performance (Figure 6) of the best memory-efficient imple-
mentation as a function of problem configuration when the
particle distribution is randomized. Generally, randomized
particle locations force threads to update the shared grid far
more frequently, as there is no longer a correlation between
the thread performing the update and the grid points to be
updated.

Clearly, the drop in performance is highly correlated with
problem size, and only moderately so with particle density.
On Barcelona, we observe that random particle distributions

on the mid-sized problems show the most profound drop
in performance likely due to the per-core increased cache
capacity requirements. As the cache capacity requirements
for the large problem likely already exceed the core’s caches,
they show little additional performance drops. Similarly, the
smallest problems easily fit in the last level cache and thus
don’t show as profound of a performance drop. A similar,
but more significant trend exists on Nehalem.

Figure 9 shows the relative performance of the memory-
efficient approach to the reduction approach for a random-
ized particle distribution. Unlike Figure 7, where the two
were nearly equal, we observe that the reduction approach
consistently, and dramatically outperforms the memory-efficient
approach on all architectures and problem configurations —
up to 2× on x86, and 5× on Victoria Falls. As such, we
believe in the future one must balance the benefits of re-
ductions with the costs of sorting and additional memory
capacity.

5.6 Performance Advantage of Threaded Im-
plementations

Finally, we examine the performance advantage of our
threaded implementation over the existing MPI implementa-
tion across problem sizes using a sorted particle distribution.

If memory utilization is not a concern, then we may in-
clude the threaded replicate and reduce implementation in
our comparison. As shown in Figure 10, our threaded im-
plementation exceeds MPI performance for all architectures
and all problem configurations. Generally the advantage is
diminished as particle density increases — i.e. MPI reduc-
tion time is effectively amortized. Atomic operations provide
a substantial advantage over MPI reductions for low parti-
cle densities — 1.9×, 4.4×, and 2.3× better performance on
Barcelona, Nehalem, and Victoria Falls respectively.

In the future, we do not believe replication strategies will
be cost-effective. As such, Figure 11 compares our best
memory-efficient threaded implementation with the MPI re-
duction approach. Although we have algorithmically disad-
vantaged the threaded implementation, it not only consis-
tently delivers superior performance on Barcelona and Ne-
halem, but uses dramatically less memory. However, as
density increases beyond 5 particles per grid point, Victo-
ria Falls’ memory-efficient threaded performance dips below
MPI eventually reaching roughly 65% MPI’s performance.
We believe that in the future, designers must balance perfor-
mance (algorithms) with memory capacity (design and cost)
for high concurrency multicore processors.

6. CONCLUSIONS
In this paper, we examined the benefits of a memory-

efficient, threaded multicore implementation of the charge
deposition kernel of the GTC application when compared
with the traditional replicate and reduce MPI implementa-
tion. Without regard to memory utilization, we typically
see performance gains in excess of 1.5× and as high as 4.4×.
However, we note that one of the limiting factors of the MPI
implementation is its high memory requirements. To that
end, we examined several memory-efficient implementations
that both dramatically reduce the memory usage, and en-
sure the memory usage remains constant as thread-level par-
allelism scales. On x86 architectures, such implementations
deliver near optimal performance at a fraction of the mem-
ory usage. We realize such gains through the elimination

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.5

2.0

2.5

3.0

2.53 2.88 2.8 3.01 3.13 2.91

2.36 2.68 2.78 2.84 2.26 2.79

1.65 1.87 1.86 1.94 1.89 2

1.31 1.35 1.42 1.3 Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.69 6.1 6.59 6.92 7.08 7.05

5.76 6.36 6.53 6.68 6.67 6.77

4.83 5.17 5.31 5.39 5.45 5.25

3.9 4.07 4.14 4.06 Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.8 1.04 1.27 1.7 1.7 2.02

1.25 1.55 1.89 1.9 1.97 1.98

1.2 1.75 1.56 1.37 1.31

Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 6: Parallel performance (in GFlop/s) achieved by the best memory-efficient charge deposition variant
for various grid size and particles-per-cell configurations.

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.82

0.84

0.86

0.88

0.90

0.91x0.90x0.87x0.88x0.88x0.86x

0.91x0.89x0.88x0.87x0.82x0.86x

0.83x0.82x0.81x0.81x0.81x0.82x

0.84x0.83x0.82x0.81x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.07x 0.96x 0.96x 0.94x 0.94x 0.94x

1.09x 1.00x 0.97x 0.96x 0.96x 0.95x

1.05x 1.00x 0.98x 1.00x 0.96x 0.95x

1.04x 0.99x 0.98x 1.01x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.5

0.6

0.7

0.8

0.9

1.0

0.93x 0.79x 0.60x 0.59x 0.45x 0.49x

0.95x 0.82x 0.79x 0.67x 0.63x 0.62x

1.02x 0.98x 0.77x 0.59x 0.53x

Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 7: The ratio of the performance of the best memory-efficient charge deposition variant to the Reduction
approach.

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.25

0.30

0.35

0.40

.32x .29x .29x .28x .27x .28x

.27x .25x .24x .23x .28x .24x

.36x .33x .33x .32x .33x .31x

.44x .44x .41x .44x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.32

0.34

0.36

0.38

0.40

.42x .42x .40x .38x .38x .38x

.35x .33x .32x .31x .32x .31x

.37x .35x .34x .33x .33x .34x

.41x .40x .40x .40x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.2

0.3

0.4

0.5

0.6

.34x .33x .29x .23x .24x .20x

.50x .48x .39x .39x .40x .40x

.67x .54x .58x .67x .69x

Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 8: The impact of a randomized particle distribution (multiplicative factor, compared to Figure 6) on
the performance of the best memory-efficient charge deposition variant.

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.45

0.50

0.55

0.60

0.65

0.70

.44x .42x .42x .41x .41x .42x

.57x .56x .55x .55x .54x .55x

.62x .61x .59x .60x .60x .71x

.64x .63x .65x .63x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.50

0.55

0.60

0.65

0.70

.59x .50x .48x .47x .47x .47x

.70x .65x .64x .63x .63x .63x

.69x .66x .65x .65x .64x .66x

.68x .66x .65x .72x Insufficient
Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

0.2

0.3

0.4

0.5

0.6

0.7

.42x .27x .23x .23x .19x .16x

.66x .78x .42x .40x .39x .39x

.77x .70x .54x .51x .53x

Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 9: The ratio of the performance of the best memory-efficient charge deposition variant to the Reduction
approach for a randomized particle distribution.

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.4

1.5

1.6

1.7

1.8

1.9

1.8x 1.6x 1.5x 1.5x 1.5x 1.4x

1.9x 1.7x 1.7x 1.6x 1.3x 1.5x

1.6x 1.5x 1.3x 1.3x 1.3x 1.3x

MPI Insufficient
 Memory

Pthreads &
 MPI Insufficient

 Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.5

2.0

2.5

3.0

3.5

4.0

4.4x 3.6x 2.1x 1.5x 1.3x 1.5x

2.3x 1.7x 1.5x 1.5x 1.2x 1.1x

2.2x 1.7x 1.8x 1.8x 1.8x

MPI Insufficient
 Memory

Pthreads &
 MPI Insufficient

 Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.9x 1.4x 1.4x 1.3x 1.5x 1.5x

1.6x 1.5x 1.1x 1.0x 1.1x 1.1x

2.3x 1.7x 1.3x 1.1x 1.1x

Pthreads & MPI
 Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 10: Speedup achieved by the best Pthreads implementation over the reference MPI code for various
grid size and particles-per-cell configurations.

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.6x 1.5x 1.3x 1.3x 1.3x 1.2x

1.8x 1.5x 1.5x 1.4x 1.1x 1.3x

1.3x 1.2x 1.1x 1.1x 1.1x 1.1x

MPI Insufficient
 Memory

Pthreads &
 MPI Insufficient

 Memory

2 5 10 20 50 100

A

B

C

D

(a) Barcelona

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.5

2.0

2.5

3.0

3.5

4.0

4.3x 3.4x 2.1x 1.4x 1.3x 1.4x

2.3x 1.7x 1.5x 1.5x 1.1x 1.0x

2.2x 1.7x 1.8x 1.8x 1.7x

MPI Insufficient
 Memory

Pthreads &
 MPI Insufficient

 Memory

2 5 10 20 50 100

A

B

C

D

(b) Nehalem

Number of particles per cell

P
ro

b
le

m
 S

iz
e

1.0

1.5

2.0

1.7x 1.0x .82x .79x .65x .72x

.95x 1.2x .82x .67x .71x .65x

2.3x 1.6x .98x .67x .56x

Pthreads & MPI
 Insufficient Memory

2 5 10 20 50 100

A

B

C

D

(c) Victoria Falls

Figure 11: Speedup achieved by the best memory-efficient Pthreads implementation over the reference MPI
code for various grid size and particles-per-cell configurations.

of massive N-way reductions, data structure reorganization,
faster synchronization, and possibly the elimination of MPI
overhead.

Perhaps the biggest concern is that the maximum Larmor
radius value scales roughly as mpsi

16
for the GTC problem

sizes we studied. As such, the straightforward partitioned
grid approach will not scale linearly beyond 16 threads, as
charge rings more frequently straddle multiple annuli. Un-
der such conditions, threads cannot update their exclusive
grids, but rather must update the shared grid — a slower op-
eration. As concurrency increases, the updates to the shared
grid predominate.

To solve this problem, future work will explore both the
middle ground between the full N-way grid replication of
the MPI implementation and the 2-way replication of our
partitioned grid approach. We will also examine 2D decom-
positions, particle binning to improve cache performance,
and GTC inter-kernel optimizations.

We observe that since abandoning the front-side bus ar-
chitecture, Intel’s new Nehalem processor doubles the per-
formance of AMD’s Barcelona and triples the performance
of Sun’s Niagara2. However, the processor is far more sen-
sitive to a lack of process pinning. On all three systems,
faster atomic increments would boost the performance of all
the Pthreads implementations, and also ameliorate the scal-
ability issues with the partitioned grid schemes due to the
Larmor radius variation.

Acknowledgments
We would like to express our gratitude to Intel and Sun for
their hardware donations. This work was supported by the
ASCR Office in the DOE Office of Science under contract
number DE-AC02-05CH11231, Microsoft (Award #024263),
Intel (Award #024894), and by matching funding through
U.C. Discovery (Award #DIG07-10227).

7. REFERENCES
[1] M.F. Adams, S. Ethier, and N. Wichmann.

Performance of particle in cell methods on highly
concurrent computational architectures. Journal of
Physics: Conference Series, 78:012001 (10pp), 2007.

[2] K.J. Bowers. Accelerating a particle-in-cell simulation
using a hybrid counting sort. Journal of
Computational Physics, 173(2):393–411, 2001.

[3] K.J. Bowers, B.J. Albright, B. Bergen, L. Yin, K.J.
Barker, and D.J. Kerbyson. 0.374 Pflop/s
trillion-particle kinetic modeling of laser plasma
interaction on Roadrunner. In Proc. 2008 ACM/IEEE
Conf. on Supercomputing, pages 1–11, Austin, TX,
November 2008. IEEE Press.

[4] S. Ethier, W.M. Tang, and Z. Lin. Gyrokinetic
particle-in-cell simulations of plasma microturbulence
on advanced computing platforms. Journal of Physics:
Conference Series, 16:1–15, 2005.

[5] S. Ethier, W.M. Tang, R. Walkup, and L. Oliker.
Large-scale gyrokinetic particle simulation of
microturbulence in magnetically confined fusion
plasmas. IBM Journal of Research and Development,
52(1-2):105–116, 2008.

[6] W.W. Lee. Gyrokinetic particle simulation model.
Journal of Computational Physics, 72(1):243–269,
1987.

[7] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, and R.B.
White. Turbulent transport reduction by zonal flows:
Massively parallel simulations. Science,
281(5384):1835–1837, 1998.

[8] G. Marin, G. Jin, and J. Mellor-Crummey. Managing
locality in grand challenge applications: a case study
of the gyrokinetic toroidal code. Journal of Physics:
Conference Series, 125:012087 (6pp), 2008.

[9] L. Oliker, A. Canning, J. Carter, C. Iancu,
M. Lijewski, S. Kamil, J. Shalf, H. Shan,
E. Strohmaier, S. Ethier, and T. Goodale. Scientific
application performance on candidate petascale
platforms. In Proc. 21st Int’l Parallel and Distributed
Processing Symp. (IPDPS), pages 1–12, Long Beach,
CA, March 2007. IEEE.

[10] L. Oliker, A. Canning, J. Carter, J. Shalf, and
S. Ethier. Scientific computations on modern parallel
vector systems. In Proc. 2004 ACM/IEEE Conf. on
Supercomputing, page 10, Pittsburgh, PA, November
2004. IEEE Computer Society.

[11] G. Stantchev, W. Dorland, and N. Gumerov. Fast
parallel particle-to-grid interpolation for plasma PIC
simulations on the GPU. Journal of Parallel and
Distributed Computing, 68(10):1339–1349, 2008.

	1 Introduction
	1.1 Our Contributions

	2 Gyrokinetic Toroidal Simulation
	3 Experimental Setup
	3.1 Methodology

	4 GTC Charge Deposition Kernel
	4.1 Overview
	4.2 Parallelization
	4.3 Grid Decomposition
	4.4 Synchronization Mechanisms
	4.5 Serial Optimizations

	5 Experimental Results
	5.1 Decomposition, Synchronization, and Optimization Performance
	5.2 Scalability within an SMP
	5.3 Memory Utilization
	5.4 Performance of Memory-Efficient Implementations
	5.5 Performance Impact of Random Particle Distributions
	5.6 Performance Advantage of Threaded Implementations

	6 Conclusions
	7 References

